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Abstract

Subdivision schemes are commonly used to obtain dense
or smooth data representations from sparse discrete data.
E. g., B-splines are smooth curves or surfaces that can be
constructed by infinite subdivision of a polyline or polygon
mesh of control points. New vertices are computed by lin-
ear combinations of the initial control points. We present a
new non-linear subdivision scheme for the refinement of tri-
angle meshes that generates smooth surfaces with minimum
curvature variations. It is based on a combination of edge
splitting operations and interpolation by blending circular
arcs. In contrast to most conventional methods, the final
mesh density may be locally adapted to the structure of the
mesh. As an application we demonstrate how this subdivi-
sion scheme can be used to reconstruct missing range data
of incompletely digitized 3-D objects.

1 Introduction

The basic idea behind recursive subdivision is to create
a smooth limit function by infinite refinement of an initial
piecewise-linear function (see Fig. 1). Usually, this process
is divided into two steps: asplitting step, which introduces
new vertices and a so-called“averaging” step, which com-
putes new positions for the vertices (usually by interpola-
tion). In case oflinear schemes, the new positions are linear
combinations of the positions from the previous iteration. If
the positions of the initial vertices remain unchanged, the
subdivision scheme is calledinterpolating, otherwise it is
approximating. Uniformsubdivision applies the same split-
ting and averaging rule to all vertices. Some non-uniform
schemes are able toadapttheir rules to local characteristics
of the piecewise-linear function.Stationaryschemes use
the same rules for all iterations. A comprehensive overview
of subdivision techniques is given in [23].

Linear subdivisioncan be considered as an algorithmic
generalization of classical spline techniques that requires no

Figure 1. Subdividing polygon meshes (left)
with the schemes of Loop (top) and Catmull-
Clark (bottom).

global parametrization. For this reason, the control meshes
may have an arbitrary topology. The schemes are embedded
in the theory of wavelets, since any collection of refinable
scaling functions — a basic pre-condition for constructing
wavelet spaces — can be generated by linear subdivision
(see [20] for details). The limit function may be calcu-



lated directly. It is not required to perform any iterations.
The first and most popular subdivision schemes for surfaces
were introduced by Doo/Sabin [8] and Catmull/Clark [2].
Their methods are both based on quadrilateral meshes and
either generalize biquadratic or bicubic tensor product B-
splines. The simplest scheme for triangle meshes, intro-
duced by Loop [17], splits each triangle into four and con-
verges to quartic triangular B-splines. Figure 1 shows ex-
amples for the Loop and the Catmull-Clark scheme [19].1

Other well known subdivision schemes arede Castelau’s
Algorithm [6] which generates Bézier2 curves and surfaces
andde Boor’s Algorithmwhich converges to B-splines [5].
All these schemes are linear, approximating, uniform3 and
stationary. Thus, a mesh cannot be adaptively refined. How-
ever, it is always possible to apply mesh thinning techniques
after subdivision (see [24] for an example).

Although it is well known that normal based geome-
try computations are superior to any other schemes (just
compare the results of Phong and Gouraud shading), most
researchers avoid such approaches, because they are non-
linear and therefore difficult to handle in theory. Linear
methods, however, are not well suited for modeling geomet-
ric data. For visualization and CAM techniques like CNC
milling, surfaces with minimum curvature variations are
usually desired. This cannot be achieved using linear tech-
niques. Hence, our new subdivision scheme introduced in
[15] is based on a non-linear method for modeling meshes
discussed in detail in [10, 12, 13, 14]. It was originally de-
signed for dense triangle meshes like those reconstructed
from optical range data, but works with sparse meshes as
well. The generated surfaces feature minimum curvature
variations and are therefore especially suited for visualiza-
tion and rapid prototyping. In Sec. 3 we give a brief intro-
duction to this approach.

2 Related Work

A basic ingredient of subdivision is interpolation, which
requires a theoretical framework to achieve satisfying re-
sults. General triangle meshes, however, are not structured
[22]. Thus, no basic theory for interpolating, subdivid-
ing, smoothing, and compressing triangle meshes is known.
Merely, some limited approaches exist that work for special
cases.

For regular structures (e. g., images),multiresolution
analysisbased on wavelets is well known [20]. The data
are decomposed by a series of high and low pass filters. In
contrast to the sine and cosine functions of Fourier analysis,

1Images courtesy of Peter Schröder, California Institute of Technology.
Original mesh of the mannequin courtesy of Hugues Hoppe, Microsoft
Research, Redmond, Washington.

2Bernstein polynomials serve as scaling functions.
3De Castelau’s Algorithm is “almost” uniform.

the wavelet basis functions are spatially and temporally lim-
ited. Thus, finite signals are easier to process while avoid-
ing any artifacts. The simplest type of wavelets for images
are Haar functions which simply add (low pass) or subtract
(high pass) neighboring pixels. Lounsbery et al. [18] have
generalized this approach for semi-regular meshes with sub-
division connectivity: all vertices (with singular exceptions)
must have the same number of neighbors. The original
mesh is approximated by a coarse one that is adequate just
to describe the topology of the object. Usually a few hun-
dred triangles are sufficient. Objects which are homeomor-
phic to a sphere may even be approximated by a tetrahe-
dron. A series of correction terms (wavelet coefficients) is
computed. These are necessary to refine the basic mesh
by recursive subdivision until the original mesh is recon-
structed. Each subdivision level owns a complete record of
wavelet coefficients. Structure dependent mesh reduction
is simply done by eliminating small coefficients. General
meshes must be remeshed in advance in order to achieve
subdivision connectivity. In this case the original mesh can
only be reconstructed approximately. Another drawback of
this approach is the constant mesh density in each resolu-
tion step. Adaptive refinement is not possible. However,
Balmelli et al. [1] have recently proposed a method to con-
struct an adaptive, semi-regular mesh. This may be used to
design an adaptive wavelet approach.

A signal processing approachfor general meshes was
proposed by Taubin [21]. He generalized the discrete
Fourier transform by interpreting frequencies as eigenvec-
tors of a discrete Laplacian. Defining such a Laplacian
for irregular meshes allows usage of linear signal process-
ing tools like high and low pass filters, data compression
and multiresolution hierarchies. The Laplacian can be ex-
pressed as a weighted sum of all difference vectors to all
direct neighbors of a vertex (“umbrella operator,” see [16]).
Laplacian smoothing and interpolation reduces surface cur-
vature and tends to flatten the surface, so it must be used
very carefully. Since the vertices are isotropically moved,
the geometry may be seriously damaged, even if the sur-
face is flat. Guskov et al. [9] introduced a more complex
Laplacian that leaves flat surfaces invariant. They apply
local parameterizations in order to compute second order
derivatives.

In order to construct a multiresolution analysis for irreg-
ular meshes, Daubechies et al. [4] have combined the signal
processing approach with Hoppe’sprogressive meshes[11].
Non-uniform “second generation wavelets” are defined for
that purpose.

However, as mentioned before, the translation of con-
cepts of linear signal theory is not the optimal choice for
modeling geometry data. Therefore Desbrun et al. [7] gen-
eralized the Laplacian approach for invariance of surfaces
with constant curvature. Their “curvature flow” operator for



Figure 2. Interpolation of a new vertex Vabove
triangle 4(V1,V2,V3) by blending circular arcs.

Figure 3. Cross section through one of the
arcs of Fig. 2.

mesh smoothing is heuristically defined. Our “circular arcs”
approach, in contrast, is inspired by physical observations.
Recently, the “curvature flow” approach was improved by
Clarenz et al. [3]. They use anisotropic geometric diffusion
in order to preserve or even enhance edges while smoothing.

3 Interpolation

Our method works best with dense meshes like those re-
constructed from range images. It is assumed that the trian-
gle mesh approximates a smooth surface with the vertices
as sampled surface points. The sampling density must be
high enough to neglect the variations of surface curvature
between adjacent vertices. If this is true, the underlying
surface can locally be approximated by circular arcs. All
necessary information can be derived solely from the ver-
tex positions and the assigned vertex normals of the triangle
mesh. As an example, we show how a curved triangle is
interpolated by blending circular arcs that originate from its
vertices (see Fig. 2).

In order to interpolate a new vertexV above a flat triangle
4(V1,V2,V3), the projectionV′ of V onto the triangle is
constructed from given barycentric coordinatesbi :

V′=
3

∑
i

biVi (1)

with ∑3
i bi = 1 andbi ≥ 0 for all i. A new surface normal~n

is computed for that position by linear interpolation of the
surrounding vertex normals~ni :

~n = ∑3
i bi~ni

‖∑3
i bi~ni‖

. (2)

The new normal~n defines a straight lineL throughV′. This
line and each vertex normal~ni define a circular arcai with
radiusri that originates fromVi and intersectsL in V′′

i:

ri =
‖ai‖
αi

≈ di

αi
, (3)

V′′
i = V′+ δi~n (4)

with

δi = ‖V′′
i −V′‖ ≈ di

cos(βi − αi
2 )

cos(αi
2 )

(5)

(see [12] for details). As shown in Fig. 3,di is the distance
betweenV andVi , αi is the angle between the projections
of the normals~n and~ni , andβi is the angle between~n and
the distance vector~di = Vi −V′. The normals~n and~ni do
not need to intersect in 3-D space. Since the interpolated
surface should be as constantly curved as possible, the new
vertexV should be as close to allV′′

i as possible. This is
ensured by linear interpolation ofV from the positions of
theV′′

i :

V =
3

∑
i

biV′′
i . (6)

The surfaceS of the curved triangle is the infinite set of
interpolated verticesV(b) for all possible parameter values
b = (b1,b2,b3)T :

V(b) =
3

∑
i

bi (Vi +~n(b)δi(b)) . (7)

For practical computation,δi can be expressed in terms of
inner products~n ·~ni and~n ·~di :

δi = di cosβi +di

√
(1−cos2 βi)(1−cosαi)

1+cosαi
(8)



with

cosαi ≈~n ·~ni , (9)

cosβi ≈ ~n ·~di

di
. (10)

Unfortunately, this interpolation scheme does not generate
G1-continuous (tangent continuous) transitions between ad-
jacent triangles, since sometimes the interpolated surfaceS
does not perpendicularly intersect with the vertex normals,4

as shown in Fig. 4. This can be enforced, however, by
smoothing the final surface using the method described in
[10, 12, 13, 14].5 Since the positions of the original vertices
Vi are moved in this case, the curved triangleapproximates
the flat one.

Figure 4. Cross section through one of the
edges of triangle 4(V1,V2,V3). The interpo-
lated surface S does not perpendicularly in-
tersect with the vertex normals.

4 Subdivision

A given triangle is subdivided by first splitting the tri-
angle into four new ones and then raising the new vertices
with the described interpolation method (see Fig. 5).

Uniform refinementof a triangle mesh is carried out
by splitting each edge of the mesh at its midpoint (see
Fig. 6, left) and interpolating a new position for the new
vertex. Thus, the splitting scheme is the same as in Loop’s
[17] approach. IfV1 and V2 are the endpoints of the
split edge, the barycentric coordinates for interpolation are
b = (0.5,0.5,0)T. This procedure is iterated until a given
number of iterations is reached. Figure 5 shows the first it-
eration of refining one single triangle and the resulting limit
surfaceS for an infinite number of iterations. As in linear

4Actually this only happens, if the curvature variations between adja-
cent vertices are not negligible.

5See also “www.optik.uni-erlangen.de/osmin/haeusler/people/sbk/
smoothing_d.html”.

approaches, it is possible to compute the limit surface by
directly applying Eq. (7) to arbitrary vertex positionsb.

For adaptive refinement, the distances between the edge
midpoints and the interpolated vertex positions serve as cost
functions (see Fig. 5). IfVi andV j are the endpoints of an
edge with lengthdi j , M i j is the midpoint of this edge andVi j

the new vertex, the cost functionεi j for this edge is defined
by

εi j = ‖Vi j −M i j‖ =
1
4

di j (δi + δ j). (11)

Only those edges, for which the cost functions exceed a
given threshold, are split. This threshold limits the approx-
imation error of the final surface with regard to the limit
surface.

Figures 7 and 8 display subdivision results for synthetic
and noiseless data. The mesh of a cube consisting of 8 ver-
tices and 12 triangles is uniformly refined by subdivision.
Due to the non-linear interpolation rule, the limit surface
of a perfect (noiseless) cube is a sphere. This would not
be possible using solely linear techniques. In the second
example a height step consisting of 8 vertices with verti-
cal vertex normals (not shown) is adaptively refined with
an approximation error of 0.5% of the original sampling in-
tervals. An additional constraint restricts the new sampling
distances not to be less than 10% of the old values.

As mentioned above, the pure interpolation rule gen-
eratesG1-discontinuities in the limit surface (upper row
of Fig. 8). These discontinuities vanish if the mesh is
smoothed after each subdivision step, resulting in a mesh
thatapproximatesthe original one (lower row of Fig. 8). In
this case the limit surfaceS cannot be directly computed. It
mustbe constructed by recursive subdivision.

While the non-linear interpolation scheme ensures the
limit surface to beG2-continuous within each initial trian-
gle, the transitions between initial patches may only beG1-
continuous. This is not a disadvantage, because real world

Figure 5. Splitting triangle 4(V1,V2,V3) into
four new triangles by subdivision.



Figure 6. Topological operations for triangle
meshes.

Figure 7. Uniform subdivision of a cube con-
sisting of 8 vertices; cube with assigned ver-
tex normals (left), intermediate surface after 4
subdivision steps (middle), and limit surface
(right).

objects often have such discontinuities, for example when a
cylindrical patch meets a flat one. AG2-continuous transi-
tion would cause surface undulations in this case. Thus, the

Figure 8. Adaptive subdivision of a height
step (left); upper: interpolating subdivision
with G1-discontinous limit surface (right);
lower: approximating subdivision with G1-
continuous limit surface (right).

Figure 9. The original dense mesh of a human
canine (top: 41,000 triangles) is thinned (mid-
dle: 9,000 triangles) and then refined again by
subdivision (bottom: 28,000 triangles).

limit surface always adopts the continuity characteristics of
the vertex normals.

Adaptive subdivision poses another problem: Since
edges are irregularly split, the resulting mesh may become
rather uneven with elongated or even degenerated triangles.
To avoid this, a topological optimization step must be car-
ried out after each subdivision iteration. Edge swap opera-
tions (see Fig. 6) are used to keep the triangles as equilateral
as possible.

We tested our method by thinning a dense triangle mesh
of a human canine and then reconstructing the dense mesh
by subdivision. Figure 9 depicts the dense mesh that was
reconstructed from 10 range images (top), the sparse ver-
sion that was thinned with an error bound of 0.35 mm (mid-
dle), and the reconstructed mesh (bottom). The subdivision
threshold was 0.007 mm. In Fig. 10 the differences between



Figure 10. Visualization of the differences be-
tween the original mesh (light grey) and the
reconstructed one (red 7 resp. dark grey) from
Fig. 9. The maximum difference is 0.2 mm
(bottom).

the original mesh in light grey and the reconstructed one in
red7 resp. dark grey are visualized. The maximum devia-
tion between both meshes is 0.2 mm. This indicates that the
subdivision surface, although not perfect, is quite a good
reconstruction of the original data.

5 An Application

While measuring complex objects with optical 3-D sen-
sors, it is often difficult to scan the complete surface. Usu-
ally, data are missing due to shading effects or because it
is not possible to reach all parts of the object, specifically
if there are cavities and other small sized concave regions.
We now demonstrate how the described subdivision method
can be used to reconstruct these missing data.

Missing data cause gaps and holes in the reconstructed
triangle mesh (see Fig. 11).8 These defects are filled with
flat triangles by topological operations (see Figs. 12 and
13). Gaps between separate components of the mesh are

7The original color images can be viewed in “www.optik.uni-
erlangen.de/osmin/haeusler/people/sbk/papers/3dim2001_subdiv.pdf”.

8Statue of Saint George from “Germanisches Nationalmuseum”, Nürn-
berg.

Figure 11. Mesh of Saint George (recon-
structed from 26 rabge images) with holes
due to missing data.

Figure 12. Topological operations to close
gaps and holes in triangle meshes.

closed by gap bridging, holes are closed by mesh grow-
ing. The mesh growth operation simply connects adjacent
edges with a new one and checks if the new triangle does
not overlap with any other triangle in its vicinity (see [12]



Figure 13. The holes are closed with flat tri-
angles.

for details). In order to bridge gaps for each edge of the first
component, the closest point of the second component must
be found. Normally, it is not trivial to solve this so-called
“closest point problem” in less than quadratic time. How-
ever, in our case we need only search for boundary vertices.
Since their number usually has the magnitude

√
N, even the

“brute force” approach solves the problem in linear time.
Finally, the flat triangles filled in by the closing operations
are refined with the new approximating subdivision method
(see Fig. 14). The holes are filled in with surfaces that ex-
trapolate the data at the boundaries with minimum curvature
variations. As a result, the transition between measured and
synthetic data is not visible. The shape is reconstructed in a
plausible manner. Of course, it is not possible to reconstruct
small details which were not scanned.

Figure 14. The new triangles are refined by
subdivision.

6 Conclusions

The practical benefit of the new non-linear subdivision
scheme, at least the approximating one, is obvious: It en-
ables to seamlessly integrate synthetic surfaces into mea-
sured data. Unlike linear subdivision, which is embedded in
the theoretical framework of wavelets, the theoretical back-
ground of this new method is still not satisfying. It seems
to be a challenge for future research to extend the classical
wavelet theory to non-linear schemes. Maybe, this will cre-
ate the long desired theoretical basis for interpolation, sub-
division, smoothing, and compression of unstructured data
like triangle meshes.
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[1] L. Balmelli, J. Kovǎcevíc, and M. Vetterli. Solving the
coplanarity problem of regular embedded triangulations. In
B. Girod, H. Niemann, and H.-P. Seidel, editors,Vision,
Modeling and Visualization ’99, pages 237–244. Infix Ver-
lag, Sankt Augustin, 1999.

[2] E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes.Computer-Aided De-
sign, 10(6):350–355, Sept. 1978.

[3] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic ge-
ometric diffusion in surface processing. InProceedings of
Visualization 2000. IEEE, Oct. 2000.

[4] I. Daubechies, I. Guskov, P. Schröder, and W. Sweldens.
Wavelets on irregular point sets.Phil. Trans. R. Soc. Lond.
A., 357(1760):2397–2413, 1999.

[5] C. de Boor. A Practical Guide to Splines, volume 27 of
Applied Mathematical Sciences. Springer, New York, 1978.

[6] P. de Faget de Casteljau. Courbes et surfaces à pôles. Tech-
nical report, André Citroën, Paris, 1963.

[7] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Im-
plicit fairing of irregular meshes using diffusion and cur-
vature flow. In A. Rockwood, editor,Proceedings of SIG-
GRAPH 99, pages 317–324. Addison Wesley, Aug. 1999.

[8] D. Doo and M. Sabin. Behaviour of recursive division sur-
faces near extraordinary points.Computer-Aided Design,
10(6):356–360, Sept. 1978.

[9] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution
signal processing for meshes. Technical Report TR-99-01,
Princeton University, January 1999.

[10] G. Häusler and S. Karbacher. Reconstruction of smoothed
polyhedral surfaces from multiple range images. In
B. Girod, H. Niemann, and H.-P. Seidel, editors,3D Im-
age Analysis and Synthesis ’97, pages 191–198. Infix Ver-
lag, Sankt Augustin, 1997.

[11] H. Hoppe. Progressive meshes. In H. Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, pages 99–108. Ad-
dison Wesley, Aug. 1996.

[12] S. Karbacher. Rekonstruktion und Modellierung von
Flächen aus Tiefenbildern. Shaker Verlag, Aachen, 1997.

[13] S. Karbacher. Discrete modeling of point clouds. In
B. Girod, G. Greiner, and H. Niemann, editors,Principles of
3D Image Analysis and Synthesis, pages 166–175. Kluwer
Academic Publishers, Boston-Dordrecht-London, 2000.

[14] S. Karbacher, G. Häusler, and H. Schönfeld. Reverse
engineering using optical range sensors. In B. Jähne,
H. Haußecker, and P. Geißler, editors,Handbook of Com-
puter Vision and Applications, volume 3: Systems and Ap-
plications, pages 359–380. Academic Press, Boston, 1999.

[15] S. Karbacher, S. Seeger, and G. Häusler. A non-linear sub-
division scheme for triangle meshes. In B. Girod, H. Nie-
mann, and H.-P. Seidel, editors,Vision, Modeling and Vi-
sualization 2000, pages 163–170. Akademische Verlagsge-
sellschaft, Berlin, 2000.

[16] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In
M. Cohen, editor,SIGGRAPH 98 Conference Proceedings,
pages 105–114. Addison Wesley, July 1998.

[17] C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Aug. 1987.

[18] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolu-
tion analysis for surfaces of arbitrary topological type.ACM
Transactions on Graphics, 16(1):34–73, Jan. 1997.

[19] U. Reif and P. Schröder. Curvature smoothness of subdivi-
sion surfaces. Technical Report TR-00-03, California Insti-
tute of Technology, 2000.

[20] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin.Wavelets
for Computer Graphics. Morgan Kaufmann Publishers, Inc.,
1996.

[21] G. Taubin. A signal processing approach to fair surface de-
sign. In R. Cook, editor,SIGGRAPH 95 Conference Pro-
ceedings, pages 351–358. Addison Wesley, Aug. 1995.

[22] R. Westermann. Volume models. In B. Girod, G. Greiner,
and H. Niemann, editors,Principles of 3D Image Analysis
and Synthesis, pages 245–251. Kluwer Academic Publish-
ers, Boston-Dordrecht-London, 2000.

[23] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for modeling and animation, July
2000. SIGGRAPH 2000 Course Notes.

[24] D. Zorin, P. Schröder, and W. Sweldens. Interactive mul-
tiresolution mesh editing. In T. Whitted, editor,Proceedings
of SIGGRAPH 97, pages 259–268. Addison Wesley, Aug.
1997.


