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ABSTRACT 
 
The current network RTK messages proposal, the so-
called Master-Auxiliary concept, has been outlined in a 
number of publications (Euler et al., 2001 and Zebhauser 
et al., 2002). The messages describe the dispersive and 
non-dispersive errors for a network of reference stations. 
This information is normally interpolated for the rover’s 
position and applied to reduce the observation errors and 
improve positioning performance. 
 
Euler et al. (2004) demonstrates the benefits of network 
RTK corrections in terms of positioning reliability, ro-
bustness and accuracy. The data used for the investigation 
was collected under fair atmospheric conditions. This 
paper concentrates on data collected during the severe 
ionospheric conditions recorded in October 2003. The 
advantage of network RTK information is measured in 
terms of the percentage of correctly fixed ambiguities. 
 
The Master-Auxiliary concept, as with other network 
RTK methods, relies on the correct resolution of the inte-
ger ambiguities between the reference stations to model 
the dispersive and non-dispersive network errors. This 
paper also investigates the influence of incorrectly fixed 
reference station ambiguities on interpolated network 
RTK information. Two approximation surfaces are inves-
tigated: a linear plane and higher order surface represented 
by a quadratic function. 
 
INTRODUCTION  
 
The Master-Auxiliary concept uses so-called dispersive 
and non-dispersive phase correction differences to com-
press network RTK information without the need for stan-
dardized correction models (Euler et al., 2001 and 
Zebhauser et al., 2002). The correction differences are 
normally interpolated and applied at the rover to reduce 
the dispersive and non-dispersive observation errors. 
 
The description of correction differences begins with the 
following definition of the single difference L1 phase 
equation  for stations k (the reference) and m (the 
auxiliary) and satellite j 
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where 
 

j
kms∆  geometric range term including antenna phase 

centre variations which have been applied by the 
network processing software. 

j
kmrδ∆  broadcast orbit error. 

kmdt∆  receiver clock error. 
j

kmT∆  tropospheric refraction error. 
j

kmI∆  frequency dependent ionospheric delay. 
j

kmN∆  frequency dependent integer ambiguity. 
ε∆  frequency  dependent random measurement error. 

t  epoch. 
c  speed of light. 

1f  frequency of L1. 
 
Replacing the index of the frequency dependent terms 
with ‘2’ yields an analogous equation for the L2 single 
difference phase. Reducing (1) by the slope distance, 
receiver clock error and the ambiguity term yields the 
ambiguity-leveled correction difference  j
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The correction difference described in (2) is separated into 
a dispersive component, consisting mainly of ionospheric 
refraction, and a non-dispersive component consisting 
primarily of tropospheric refraction and orbit errors to 
reduce the amount of data transmitted to the rover. The 
equations for the dispersive and non-dispersive compo-
nents are given in equations (3) and (4) respectively in 
meters. 
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This alternate representation of the correction differences 
has some specific benefits. Unlike the correction differ-
ences described in (2), changes in the dispersive and non-
dispersive components vary at different rates. In general, 
non-dispersive errors change slowly over time, while 
dispersive errors vary more rapidly, especially in times of 
high ionospheric activity. Therefore, optimizing the 
transmission rates of the dispersive and non-dispersive can 
maximize data-link throughput. 
 
In addition to the correction differences, the raw carrier 
phase information for the master reference station, de-
scribed via RTCM v3.0 standard messages 1003 or 1004 
(RTCM 2004), must also be streamed to the rover. Using 
the phase data of the master station and correction differ-
ence, the rover can re-assemble and apply the raw phase 
information of the auxiliary stations in conventional base-
line processing schemes. Alternatively, correction differ-
ences can also be interpolated for any position in the net-
work and used to correct rover data.  
 
As with other network RTK methods that model disper-
sive and non-dispersive errors (e.g. VRS), the Master-
Auxiliary concept relies on a common integer ambiguity 
level for the corrections (Euler et al., 2001). The effect of 
an ambiguity bias at a reference station on correction 
differences is the focus of the next section. 
 
INFLUENCE OF INCORRECT AMBIGUITIES ON 
CORRECTIONS DIFFERENCES 
 
An incorrectly determined single difference ambiguity 
between a master and auxiliary reference station will 
manifest itself in the dispersive and non-dispersive correc-
tion differences and also in any interpolated correction 
differences. Table 1 and Table 2 show how an incorrect 
L1 and/or L2 single difference ambiguity affects the dis-
persive and non-dispersive correction differences de-
scribed in (3) and (4) respectively. For simplicity, the 
magnitude of the ambiguity error is restricted to ±1 cycle. 
 

        2N∆  

1N∆  0 +1 −1 

0 0 ≈ 1.98 ≈ −1.98 
+1 ≈ −1.54 ≈ 0.44 ≈ −3.53 
−1 ≈ 1.54 ≈ 3.53 ≈ -0.44 

Table 1 Impact of a wrong L1 ( ) and/or L2 (1N∆ 2N∆ ) 
single difference ambiguity on the dispersive correction 
difference (in units of L1 cycles). 

 

        2N∆  

1N∆  0 +1 −1 

0 0 ≈ −1.98 ≈ 1.98 
+1 ≈ 2.55 ≈ 0.56 ≈ 4.53 
−1 ≈ −2.55 ≈ −4.53 ≈ −0.56 

Table 2 Impact of a wrong L1 ( ) and/or L2 (1N∆ 2N∆ ) 
single difference ambiguity on the non-dispersive correc-
tion difference (in units of L1 cycles). 
 
The magnitude of the ambiguity error can be amplified in 
the dispersive and non-dispersive corrections. For exam-
ple, in the dispersive case (Table 1) a maximum error of 
±3.53 L1 cycles occurs when the incorrect L1 and L2 
ambiguities are of equal magnitude but opposite sign. 
Similarly in the non-dispersive case (Table 2), a maxi-
mum error of ±4.53 L1 cycles also occurs when the error 
in the L1 and L2 ambiguities are of equal magnitude but 
opposite sign. 
 
In network RTK, optimal correction differences are nor-
mally interpolated for the rover’s position. Numerous 
algorithms can be employed for the interpolation task. For 
example, Euler et al. (2003) and Euler et al. (2004) com-
pare the effectiveness of a distance weighted interpolation 
technique with a two-dimensional (2-D) linear plane rep-
resented by  
 

yaxaayxbL 210),( ++=  (5) 
 
where 

Lb  linear surface. 

ia  coefficients defining the plane. 
yx,  coordinates of the interpolation point. 

 
Higher order approximations are also readily definable. 
For example, a 2-D quadratic surface can be defined as 
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where 

Qb  quadratic surface. 
 
Interpolation algorithms are also sensitive to errors, such 
as incorrect ambiguities, present in the corrections differ-
ences. Figure 1 represents a hypothetical network of 6 



reference stations used to analyse the effect of an error at 
one reference station on the interpolated correction at the 
rover for two interpolation algorithms: the linear approxi-
mation (5) and the quadratic approximation (6). 
 

 
Figure 1 Hypothetical network of 6 reference stations and 
one rover station located at the centroid of the figure. 

 
Reference stations ,  and  lie at the vertices of an 
equilateral triangle ∆ and stations , , and  lie at 
the midpoints of ∆. Due to the symmetry of the network 
there are only two scenarios that have to be considered in 
the analysis: an error introduced at one of the reference 
stations located at the vertices of ∆ (e.g. ) and an error 
introduced at one of the reference stations located at the 
midpoints of ∆ (e.g. ). 
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Let the station coordinates be  where 

 for the reference stations and i  for the 
rover station. For simplicity, let . If  is the 
distance from  to ,  and , respectively, then 
the plane coordinates of the reference stations in Figure 1 
are 
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Let the value given at reference station  (e.g. an L1 or L2 
phase correction) be . We want to approximate the 
values at  by a polynomial function  so 
that  

i
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where iε  is the approximation error. The linear approxi-
mation given in (5) can be rewritten as  
 

t
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and the quadratic case (6) as 
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Expanding the polynomial equation (8) for all  results in i
 

L
t

L baaaM ε+=• ),,( 210  (11) 
 
where  



























=

66

55

44

33

22

11

1
1
1
1
1
1

yx
yx
yx
yx
yx
yx

M L , ,  



























=

6

5

4

3

2

1

b
b
b
b
b
b

b



























=

6

5

4

3

2

1

ε
ε
ε
ε
ε
ε

ε L

 
for the linear equation (9). For brevity, the expansion of 
(8) for the quadratic case is not given here. 
 
For the linear case, the polynomial coefficients 

 are given by t
L aaaa ),,( 210≡
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An analogous equation for the quadratic polynomial coef-
ficients  is obtained by substituting the subscript ‘ ’ 

in (12) with ‘ ’. 
Qa L

Q
 
Substituting  from (7) into  yields the follow-

ing expression for 

),( ii yx LM

( ) t
LL

t
L MM

1−
M : 

 

( )






















−−−

−−=
−

dddddd

dddd
MMM t

LL
t
L

15
2

15
2

15
1

15
4

15
1

15
2

0
15

32
15

30
15

3
15

32
6

1
6

1
6

1
6

1
6

1
6

1

1  (13) 

 
Again the corresponding quadratic equation is omitted for 
brevity. Assume that the values  differ from the correct 

values 
ib

ib  by ib∆ , i.e. ii bbb ∆+i = . Substituting 
tbbbbbb )( 661 ∆+∆+=∆+ ,,1 K  into (12) leads to a natu-

ral splitting of the polynomial coefficients  into terms La

La belonging to b and terms belonging to a∆ b∆ . We 
explicitly write down this separation of the polynomial 
coefficients for the linear case 
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For the quadratic case ∆  is given by Qa
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Thus, following from (9) and (10), the change in the ap-
proximated value at  due to the reference station 
biases  is given by  

),( yxP =
b∆
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for the linear case and 
 

QQ ayxyxyxyxb ∆•=∆ ),,,,,1(),( 22  (18) =d
 
for the quadratic case. The analysis is restricted to the 
following two cases: 
 
Case 1: error δ  introduced at , i.e.  1P tb )0,0,0,0,0,(δ=∆
 
Case 2: error δ  introduced , i.e.  2P tb )0,0,0,0,,0( δ=∆
 
Substituting  for case 1 and case 2 into (15) and (16) 
yields the following general expressions for the change in 
the approximated value : 
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For the rover station , located at the centre of 
the network, (19), (20), (21) and (22) reduce to the follow-
ing simplified expressions 
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Thus, the influence of a bias at ,  or  (case 1) on 
the interpolated value at  for the quadratic approxima-
tion is only 

1P 3P 5P

0P

3
2  of the influence for the linear approxima-

tion. However, a bias at , , or  (case 2) causes, in 
the linear case, an error in the interpolated value at  
that is only 
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of the magnitude of the quadratic approxi-
mation. Figure 2, Figure 3 and Figure 4, illustrate the 
interpolated error for any station  for each case 
with 

), y(x=P
=δ . 

 

 
Figure 2 Case 1 (quadratic approximation): the interpo-
lated error at a station  resulting from a bias at 
one of the reference stations ,  or . 
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Figure 3 Case 1 (linear approximation): the interpolated 
error at a station ),( yxP =  resulting from a bias at one of 
the reference stations ,  or . 1P 3P 5P

 



 
Figure 4 Case 2 (quadratic approximation): the interpo-
lated error at station  resulting from a bias pre-
sent at one of the reference stations , , or . 

),( yxP =

2P 4P 6P

For the network described in Figure 1, the interpolated 
error at the central station  is always reduced for both 
the linear and quadratic approximations in comparison to 
the magnitude of the error at the reference station. How-
ever, other network configurations of 6 reference stations 
(the minimum number of stations necessary for a quad-
ratic approximation) were analysed where the quadratic 
approximation amplifies the introduced error at the centre 
of the network. For example, Figure 5 demonstrates the 
results for a network of reference stations placed on a 
circle around the rover station. Since an exact circle re-
sults in a singular configuration for the quadratic ap-
proximation, one of the reference stations is slightly 
shifted away from an exact circle. 

0P

 

 
Figure 5 The interpolated error at a station ),( yxP =  
resulting from a bias one reference station for the quad-
ratic approximation. 

The amplification of the error at  is visually apparent 
(value is much greater than the reference station bias 

0P

1=δ ). In contrast to the quadratic case, the linear ap-
proximation always attenuates the introduced error by a 
factor of about n1  where is the number of stations used 
in the network.  

n

Due to the higher sensitivity in many cases of the quad-
ratic approximation to errors in reference station data and 
to the many singular network configurations we have 
recognized in our investigations (but not detailed here), 
the 2-D linear approximation is used for in the remaining 
empirical analysis which focuses on the effects of the 
ionosphere of network RTK corrections. 

 
ANALYSIS OF THE EFFECT OF HIGH 
IONOSPHERE ON NETWORK RTK 
 
For a network of 7 stations located in Bavaria, Germany, 8 
hours of 1 Hz data were collected on the 31st October 
2003 during a period of known high ionospheric activity 
(IPS Radio and Space Services, 2003). The stations de-
picted in Figure 6 form a part of the SAPOS permanent 
reference station network. 
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Figure 6 Distribution of auxiliary reference stations in 
relation to the rover station 652. Station 663 was the des-
ignated master reference station.  
 

Cycle slips were removed from the raw data prior to the 
estimation of the double-differenced phase ambiguities 
between the reference stations. The resulting ambiguity-
leveled data was used to form RTCM type 20 phase cor-
rections for each reference station. Station 663 represents 
the master reference station. The remaining stations serve 
as auxiliaries, except for station 652, which is the desig-
nated rover. The length of the master-rover baseline is 
19km, which represents the shortest baseline in the net-
work. 
 
The data set was divided into two periods for the empiri-
cal analysis: 00:00–04:00am and 04:00am–08:00am. For 
these two periods, double-difference dispersive and non-
dispersive phase residuals were computed for the master-
rover baseline.  
 
The magnitude and behavior of the non-dispersive errors 
for both periods are typical of the numerous baselines 
presented in the work of Euler et al. (2004), Euler and 



Zebhauser (2003) and Euler et al. (2003). Therefore, plots 
of the non-dispersive errors are not explicitly presented 
here. 
 
The dispersive errors scaled to L1 cycles for the period 
00:00 – 04:00am are shown in Figure 7. 
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Figure 7 Dispersive errors short baseline (663 – 652, 
00:00 – 04:00am). 

A relatively large disturbance of the dispersive errors is 
evident in the first hour of the plot. Excursions of ap-
proximately 8 cycles are present during this burst. In con-
trast, the magnitude of dispersive errors in the second half 
of the plot is generally less than ±1 cycle. The disruption 
of the dispersive errors early in the data set is attributed to 
the high ionospheric activity present during the period of 
data collection.  
 
The dispersive errors scaled to L1 cycles for the period 
04:00 – 08:00am are shown in Figure 8. 
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Figure 8 Dispersive errors for the baseline 663 – 652 
(04:00 – 08:00am). 

 
The magnitude of the dispersive errors in this is generally 
less than ±1 cycle. In contrast to the period 00:00 – 
04:00am, no anomalous excursions of the errors are pre-
sent. In general, the magnitude of the dispersive errors for 
the entire data set (00:00 – 08:00am) is relatively high. As 
a comparison, the magnitude of dispersive errors for a 
94km baseline presented in Euler et al. (2004) was gener-
ally less than ±1 cycle. The master-rover baseline in this 
network is 19km, which is approximately 5 times shorter, 

yet the magnitude of the dispersive errors is of similar 
order. 
 
The dispersive and non-dispersive errors were grouped 
into elevation bins of 1 degree according to the elevation 
of the lowest satellite used to build the double difference. 
For each elevation bin, the average and mean true error 
was calculated. The mean true error ε is given by 
 

n
][εεε =  (7) 

 
where ε is the true error and n is the number of observa-
tions. Figure 9 and Figure 10 show the average and mean 
true non-dispersive errors for the periods 00:00 – 04:00am 
and 04:00 – 08:00am respectively. 
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Figure 9 Uncorrected average and true non-dispersive 
errors for the baseline 663 – 652 (00:00 – 04:00am). 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80

elevation

cy
cl

es average
true error

 
Figure 10 Uncorrected average and true non-dispersive 
errors for the baseline 663 – 652 (04:00 – 08:00am). 

Again the magnitude and behavior of the non-dispersive 
errors is typical of previous analysis (Euler et al., 2004 
and Euler and Zebhauser, 2003). The errors are apparently 
random as illustrated by the average error in both figures. 
The magnitude of the errors increases for satellites below 
20°, which is due to unmodeled geometric biases e.g. 
residual troposphere. 
 
Of particular interest in this paper is the effect of the iono-
sphere. Figure 11 shows the average and true dispersive 
errors for the period 00:00 – 04:00am. 
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Figure 11 Uncorrected average and true dispersive errors 
for the baseline 663 – 652 (00:00 – 04:00am). 

 
The apparent random nature of the average dispersive 
error suggests that no elevation dependent (dispersive) 
biases are present in the data set. In general, the magni-
tude of the errors tends to be greater for low elevation 
satellites as illustrated by the true error plot. However, two 
anomalies are evident between approximately 10° and 40° 
and between 45° and 70°. In these two regions, the disper-
sive errors tend not to decrease with increasing elevation. 
 
Figure 12 plots the average and mean true dispersive er-
rors for the second period 04:00 – 08:00am. 
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Figure 12 Uncorrected average and true dispersive errors 
for the baseline 663 – 652 (04:00 – 08:00am). 

 
The results are characteristic of the behavior of dispersive 
errors seen in previous work (Euler et al., 2004 and Euler 
and Zebhauser, 2003). The magnitude of the errors during 
this time range from approximately 0 to 0.15 cycles as 
opposed to 0 – 0.26 cycles for the period 00:00 – 04:00am 
(Figure 11). The average dispersive error is apparently 
random and the magnitude of the error decreases linearly 
with increasing elevation.  
 
The goal of network RTK corrections is to reduce the 
magnitude of the observation errors at the rover station. 
To measure this improvement, dispersive and non-
dispersive corrections for the rover position (663) were 
interpolated from a 2-D linear plane fitted to the estimated 
dispersive and non-dispersive errors of all 6 reference 
stations. An update rate of 15 seconds was adopted for the 

non-dispersive correction differences, as proposed in 
RTCM SC104. The high level of ionospheric activity, as 
demonstrated in Figure 7, enforced the use of a 2-second 
update rate for the dispersive contribution. The interpo-
lated corrections were applied to the rover data and the 
corrected double-difference phase errors computed. Figure 
13 shows the corrected dispersive and non-dispersive 
errors for the period 00:00 – 04:00am. 
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Figure 13 Corrected average and true dispersive errors of 
the baseline 663 – 652 (00:00 – 04:00am). The corrections 
were interpolated from a 2D plane surface fitted to the 
estimated dispersive errors of 6 reference stations. 

 
The dispersive errors are still apparently random. In com-
parison to Figure 11, the magnitude of the errors decrease 
linearly with increasing elevation. However, the average 
and true error plots still exhibit a high degree of noise in 
comparison to the corrected dispersive errors for the sec-
ond period (04:00 – 08:00am) shown in Figure 14. 
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Figure 14 Corrected average and true dispersive errors of 
the baseline 663 – 652 (04:00 – 08:00am). The corrections 
were interpolated from a 2D plane surface fitted to the 
estimated dispersive errors of 6 reference stations. 

 
In general, the magnitude of the dispersive errors is re-
duced in both periods. Figure 15 explicitly quantifies the 
magnitude of the improvement for the period 00:00 – 
04:00am. 
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Figure 15 Improvement in the magnitude of the dispersive 
true errors of the corrected baseline 663 – 652 (00:00 – 
04:00am). The network corrections were interpolated from 
a plane surface fitted to the estimated dispersive errors of 
6 reference stations. 
 
The interpolated corrections reduce approximately 20%-
40% of the dispersive effects over all elevation bins. The 
improvements are less significant than those shown previ-
ously in Euler et al. (2003) and Euler et al. (2004). The 
effectiveness of interpolation techniques relies on the 
spatial correlation of the dispersive errors in the network. 
However, the ionospheric burst visible during this period 
(Figure 7) is thought to be local resulting in a spatial de-
correlation of the dispersive errors. This assertion is cur-
rently the subject of ongoing research. In this case, net-
work RTK corrections are not expected to significantly 
improve processing results for this period. 
 
BASELINE PROCESSING RESULTS 
 
The baseline 663 – 652 (Figure 6) was processed with and 
without applied network corrections using observation 
periods of 45, 60 and 90-second observation times and a 
10-degree elevation mask for both data periods. The net-
work corrections were interpolated from a plane surface 
fitted to the estimated dispersive errors of 6 reference 
stations. The percentage of fixed ambiguities was used as 
the measure of processing performance.  
 
As hypothesized in the previous section, network correc-
tions applied to the rover data failed to significantly im-
prove the number of correctly fixed ambiguities for the 
period 00:00 – 04:00am. In contrast, Figure 16 shows the 
percentage of correctly fixed ambiguities for the data 
period 04:00 – 08:00am when no ionospheric bursts were 
observed. 
 

90 sec
60 sec

45 sec

uncorrected

corrected

98

97

9595

92

91

86

88

90

92

94

96

98

100

%
 fi

xe
d 

am
b

obs time

 
 
Figure 16 Percentage of fixed solutions for the corrected 
and uncorrected baseline 663 – 652 (04:00 – 08:00am) 
using 90 second, 60 second and 45 second observation 
periods and a 10-degree elevation mask. 
 
Network corrections improved processing performance for 
all the observation times tested during the period 04:00 – 
08:00am. Even during the relatively high ionosphere ac-
tivity, more than 95% of ambiguities could be fixed with 
observation times of 45 seconds or more. 
 
CONCLUSIONS 
 
A theoretical study on the impact of incorrect ambiguities 
on correction differences showed that L1 and L2 ambigu-
ity biases might be amplified in dispersive and non-
dispersive correction differences. These biases also mani-
fest themselves in the interpolated corrections. Two two-
dimensional approximation surfaces, a linear plane and a 
quadratic surface, were tested to assess the influence of a 
reference station bias on interpolated corrections. The 
quadratic approximation proved to be more sensitive to 
network geometry and in some cases even amplified the 
error present at the reference station. The linear plane 
approximation is more robust and always attenuates the 
reference station error by a factor of 1/n where n is the 
number of stations in the network. 
 
An empirical study was undertaken to measure the per-
formance of network RTK during periods of high iono-
spheric activity. An analysis of the dispersive errors pre-
sent in the test data illustrated the presence of large iono-
spheric disturbances including a so-called ionospheric 
burst. The disturbed ionospheric condition enforced a 2-
second sampling rate of the dispersive corrections to be 
adopted for the tests. 
 
Network corrections did not significantly improve RTK 
performance, measured in terms of the percentage of cor-
rectly fixed ambiguities, in the period when the iono-
spheric burst was observed. It is expected that the burst 
was localized resulting in a spatial de-correlation of the 
dispersive errors. In this case, interpolation methods will 
not be successful at modeling the true behavior of disper-
sive errors in the network. This is the subject of further 
research. 



In contrast, network corrections improved processing 
performance for all the observation times tested in the 
period not containing the ionospheric burst. More than 
95% of ambiguities could be fixed with observation times 
of 45 seconds or more. 
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