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Abstract

Subdivision schemes are commonly used to ob-
tain dense or smooth data representations from
sparse discrete data. E. g., B-splines are smooth
curves or surfaces that can be constructed by in-
finite subdivision of a polyline or polygon mesh
of control points. New vertices are computed by
linear combinations of the initial control points.
We present a newnon-linearsubdivision scheme
for the refinement of triangle meshes that gen-
erates smooth surfaces with minimum curvature
variations. It is based on a combination of edge
splitting operations and interpolation by blend-
ing circular arcs. In contrast to most conven-
tional methods the final mesh density may be lo-
cally adapted to the structure of the mesh. As an
application we demonstrate how this subdivision
scheme can be used to reconstruct missing range
data of incompletely digitized 3-D objects.

1 Introduction

The basic idea behind recursive subdivision is
to create a smooth limit function by infinite re-
finement of an initial piecewise-linear function
(see Fig. 1). Usually, this process is devided
into two steps: asplitting step, which introduces
new vertices and anaveragingor interpolating
step, which computes new positions for the ver-
tices. In case oflinear schemes, the new po-
sitions are linear combinations of the positions
from the previous iteration. If the positions of
the initial vertices remain unchanged, the subdi-
vision scheme is calledinterpolating, otherwise
it is approximating. Uniformsubdivision applies
the same splitting and averaging rule to all ver-

Figure 1: Subdividing a coarse triangle mesh of
a human canine (upper: 9,000 triangles, lower:
28,000 triangles).

tices. Some non-uniform schemes are able to
adapt their rules to local characteristics of the
piecewise-linear function.Stationaryschemes
use the same rules for all iterations. A com-
prehensive overview of subdivision techniques is
given in [16].

Linear subdivisioncan be considered as an al-
gorithmic generalization of classical spline tech-
niques that requires no global parametrization.
For that reason, the control meshes may have
arbitrary topology. The schemes are embed-
ded into the theory of wavelets, since any col-
lection of refinable scaling functions — a basic
pre-condition for constructing wavelet spaces —
can be generated by linear subdivision (see [14]



for details). The limit function may be cal-
culated directly. It is not required to perform
any iterations. The first and most popular sub-
division schemes for surfaces were introduced
by Doo/Sabin [4] and Catmull/Clark [1]. Their
methods are both based on quadrilateral meshes
and either generalize biquadratic or bicubic ten-
sor product B-splines. The simplest scheme for
triangle meshes, introduced by Loop [12], splits
each triangle into four and converges to quar-
tic triangular B-Splines. All these schemes are
linear, approximating, uniform and stationary.
Thus, a mesh cannot be adaptively refined. How-
ever, it is always possible to apply mesh thinning
techniques after subdivision (see [17] for an ex-
ample).

Although it is well known that normal based
geometry computations are superior to any other
schemes (just compare the results of Phong and
Gouraud shading), most researchers avoid such
approaches, because they are non-linear and
therefore difficult to handle in theory. Linear
methods, however, are not well suited for model-
ing geometric data. For visualization and CAM
techniques like CNC milling, surfaces with min-
imum curvature variations are usually desired.
This cannot be achieved using linear techniques.
Hence, our new subdivision scheme is based on
a non-linear method for modeling meshes dis-
cussed in detail in [6, 8, 9, 10]. It was originally
designed for dense triangle meshes like those re-
constructed from optical range data, but works
with sparse meshes as well. The generated sur-
faces feature minimum curvature variations and
are therefore especially suited for visualization
and rapid prototyping. In Sec. 3 we give a brief
introduction to this approach.

2 Related Work

A basic ingredient of subdivision is interpo-
lation, which requires a theoretical framework
to achieve satisfying results. General triangle
meshes, however, are not structured. Thus,
no basic theory for interpolating, subdividing,
smoothing, and compressing triangle meshes is
known. Merely some limited approaches exist
that work for special cases.

For regular structures (e. g. images),multires-
olution analysisbased on wavelets is well known
[14]. The data are decomposed by a series of
high and low pass filters. In contrast to the
sine and cosine functions of Fourier analysis, the
wavelet basis functions are spatially and tempo-
rally limited. Thus, finite signals are easier to
process while avoiding any artifacts. The sim-
plest type of wavelets for images are Haar func-
tions which simply add (low pass) or subtract
(high pass) neighboring pixels. Lounsbery et
al. [13] have generalized this approach for semi-
regular meshes with subdivision connectivity: all
vertices (with singular exceptions) must have the
same number of neighbors. The original mesh
is approximated by a coarse one that is adequate
just to describe the topology of the object. Usu-
ally a few hundred triangles are sufficient. Ob-
jects which are homeomorphic to a sphere may
even be approximated by a tetrahedron. A se-
ries of correction terms (wavelet coefficients) is
computed. These are necessary to refine the ba-
sic mesh by recursive subdivision until the origi-
nal mesh is reconstructed. Each subdivision level
owns a complete record of wavelet coefficients.
Structure dependent mesh reduction is simply
done by eliminating small coefficients. General
meshes must be remeshed in advance in order to
achieve subdivision connectivity. In this case the
original mesh can only be reconstructed approx-
imately. Another drawback of this approach is
the constant mesh density in each resolution step.
Adaptive refinement is not possible.

A signal processing approachfor general
meshes was proposed by Taubin [15]. He gen-
eralized the discrete Fourier transform by inter-
preting frequencies as eigenvectors of a discrete
Laplacian. Defining such a Laplacian for irregu-
lar meshes allows usage of linear signal process-
ing tools like high and low pass filters, data com-
pression and multiresolution hierarchies. The
Laplacian can be expressed as a weighted sum
of all difference vectors to all direct neighbors of
a vertex (“umbrella operator,” see [11]). Lapla-
cian smoothing and interpolation reduces sur-
face curvature and tends to flatten the surface,
so it must be used very carefully. Since the
vertices are isotropically moved, the geometry



Figure 2: Interpolation of a new vertexV over
triangle4(V1,V2,V3) by blending circular arcs.

may be seriously damaged, even if the surface
is flat. Guskov et al. [5] introduced a more com-
plex Laplacian that leaves flat surfaces invariant.
They apply local parameterizations in order to
compute second order derivatives.

In order to construct a multiresolution analysis
for irregular meshes, Daubechies et al. [2] have
combined the signal processing approach with
Hoppe’sprogressive meshes[7]. Non-uniform
“second generation wavelets” are defined for that
purpose.

However, as mentioned before, the translation
of concepts of linear signal theory is not the op-
timal choice for modeling geometry data. There-
fore Desbrun et al. [3] generalized the Laplacian
approach for invariance of surfaces with constant
curvature. Their “curvature flow” operator for
mesh smoothing is heuristically defined. Our
“circular arcs” approach, in contrast, is inspired
by physical observations.

3 Interpolation

Our method works best with dense meshes like
those reconstructed from range images. It is
assumed that the triangle mesh approximates a
smooth surface with the vertices as sampled sur-
face points. The sampling density must be high
enough to neglect the variations of surface curva-
ture between adjacent vertices. If this is true, the
underlying surface can locally be approximated
by circular arcs. All necessary information can
be derived solely from the vertex positions and
the assigned vertex normals of the triangle mesh.

Figure 3: Cross section through one of the arcs
of Fig. 2.

As an example, we show how a curved triangle is
interpolated by blending circular arcs that origi-
nate from its vertices (see Fig. 2).

In order to interpolate a new vertexV over
a flat triangle4(V1,V2,V3), the projectionV′
of V onto the triangle is constructed from given
barycentric coordinatesbi :

V′=
3

∑
i

biVi (1)

with ∑3
i bi = 1 andbi ≥ 0 for all i. A new surface

normal~n is computed for that position by linear
interpolation of the surrounding vertex normals
~ni :

~n = ∑3
i bi~ni

‖∑3
i bi~ni‖

. (2)

The new normal~n defines a straight lineL
throughV′. This line and each vertex normal~ni

define a circular arcai with radiusri that origi-
nates fromVi and intersectsL in V′′

i :

ri =
‖ai‖
αi

≈ di

αi
, (3)

V′′
i = V′+δi~n (4)

with

δi = ‖V′′
i −V′‖ ≈ di

cos(βi − αi
2 )

cos(αi
2 )

(5)



(see [8] for details). As shown in Fig. 3,di is
the distance betweenV and Vi, αi is the angle
between the projections of the normals~n and~ni ,
and βi is the angle between~n and the distance
vector~di = Vi −V′. The normals~n and~ni do not
need to intersect in 3-D space. Since the inter-
polated surface should be as constantly curved
as possible, the new vertexV should be as close
to all V′′

i as possible. This is ensured by linear
interpolation ofV from the positions of theV′′

i :

V =
3

∑
i

biV′′
i . (6)

The surfaceSof the curved triangle is the infinite
set of interpolated verticesV(b) for all possible
parameter valuesb = (b1,b2,b3)T :

V(b) =
3

∑
i

bi (Vi +~n(b)δi(b)) . (7)

For practical computation,δi can be expressed in
terms of inner products~n ·~ni and~n ·~di :

δi = di cosβi +

+di

√
(1−cos2βi)(1−cosαi)

1+cosαi
(8)

with

cosαi ≈~n ·~ni, (9)

cosβi ≈ ~n ·~di

di
. (10)

Unfortunately, this interpolation scheme does
not generateG1-continuous (tangent continu-
ous) transitions between adjacent triangles, since
sometimes the interpolated surfaceS does not
perpendicularly intersect with the vertex nor-
mals,1 as shown in Fig. 4. This can be enforced,
however, by smoothing the final surface using
the method introduced in [6, 8, 9, 10]. Since the
positions of the original verticesVi are moved in
this case, the curved triangleapproximatesthe
flat one.

1Actually this only happens, if the curvature variations
between adjacent vertices are not negligible.

Figure 4: Cross section through one of the edges
of triangle4(V1,V2,V3). The interpolated sur-
faceSdoes not perpendicularly intersect with the
vertex normals.

4 Subdivision

A given triangle is subdivided by first splitting
the triangle into four new ones and then raising
the new vertices with the described interpolation
method (see Fig. 5).

Uniform refinementof a triangle mesh is car-
ried out by splitting each edge of the mesh at
its midpoint (see Fig. 6) and interpolating a new
position for the new vertex. Thus, the splitting
scheme is the same as in Loop’s [12] approach.
If V1 andV2 are the endpoints of the split edge,
the barycentric coordinates for interpolation are
b = (0.5,0.5,0)T. This procedure is iterated un-
til a given number of iterations is reached. Fig-
ure 5 shows the first iteration of refining one sin-
gle triangle and the resulting limit surfaceS for
an infinite number of iterations. As in linear ap-

Figure 5: Splitting triangle4(V1,V2,V3) into
four new triangles by subdivision.



Figure 6: Topological operations for triangle
meshes.

proaches, it is possible to compute the limit sur-
face by directly applying Eq. 7 to arbitrary vertex
positionsb.

For adaptive refinement, the distances be-
tween the edge midpoints and the interpolated
vertex positions serve as cost functions (see
Fig. 5). If Vi andV j are the endpoints of an edge
with lengthdi j , M i j is the midpoint of this edge
andVi j the new vertex, the cost functionεi j for
this edge is defined by

εi j = ‖Vi j −M i j‖ =
1
4

di j (δi +δ j). (11)

Only those edges, for which the cost functions
exceed a given threshold, are split. This thresh-
old limits the approximation error of the final
surface with regard to the limit surface.

Figures 7 and 8 display subdivision results for
synthetic and noiseless data. The mesh of a cube
is uniformly refined by 4 subdivision steps (15
new vertices for each initial edge), resulting in an
approximation of a sphere. Due to the non-linear
interpolation rule, the limit surface of a perfect
(noiseless) cube is a sphere. This would not be
possible using solely linear techniques. In the
second example a height step is adaptively re-
fined with an approximation error of 0.5% of the
original sampling intervals. An additional con-
straint restricts the new sampling distances not
to be less than 10% of the old values.

As mentioned above, the pure interpolation
rule generatesG1-discontinuities in the limit sur-
face (upper row of Fig. 8). These discontinuities
vanish if the mesh is smoothed after each sub-
division step, resulting in a mesh thatapproxi-
matesthe original one (lower row of Fig. 8). In
this case the limit surfaceS cannot be directly
computed. Itmustbe constructed by recursive
subdivision.

Figure 7: Uniform subdivision of a cube (4 iter-
ations).

Figure 8: Adaptive subdivision of a height step
(left); upper: interpolating subdivision withG1-
discontinous limit surface (right); lower: approx-
imating subdivision withG1-continuous limit
surface (right).

While the non-linear interpolation scheme en-
sures the limit surface to beG2-continuous
within each initial triangle, the transitions
between initial patches may only beG1-
continuous. This is not a disadvantage, because
real world objects often have such discontinu-
ities, for example when a cylindrical patch meets
a flat one. AG2-continuous transition would
cause surface undulations in this case. Thus, the
limit surface always adopts the continuity char-
acteristics of the vertex normals.

Adaptive subdivision poses another problem:
Since edges are irregularly split, the resulting
mesh may become rather uneven with elongated
or even degenerated triangles. To avoid this, a
topological optimization step must be carried out



Figure 9: The original dense mesh of the human
canine (upper: 41,000 triangles) and the refined
one from Fig. 1 (lower: 28,000 triangles).

after each subdivision iteration. Edge swap oper-
ations (see Fig. 6) are used to keep the triangles
as equilateral as possible.

The coarse mesh of Fig. 1 is a thinned version
of a dense mesh that was reconstructed from 10
range images, and was refined with our approxi-
mating scheme (Fig. 9). The mean deviation be-
tween the original mesh and the refined one is
35 µm, the maximum is 315µm. This indicates
that the subdivision surface, although not per-
fect, is quite a good reconstruction of the original
data.

5 An Application

While measuring complex objects with optical
3-D sensors, it is often difficult to scan the com-
plete surface. Usually, data are missing due to
shading effects or because it is not possible to
reach all parts of the object, specifically if there
are cavities and other small sized concave re-
gions. We now demonstrate how the described
subdivision method can be used to reconstruct
these missing data.

Missing data cause gaps and holes in the re-

Figure 10: Mesh of St. George with holes due to
missing data.

Figure 11: Topological operations to close gaps
and holes in triangle meshes.

constructed triangle mesh (see Fig. 10). These
defects are filled with flat triangles by topolog-
ical operations (see Figs. 11 and 12). Gaps
between separate components of the mesh are
closed by gap bridging, holes are closed by mesh
growing. The mesh growth operation simply
connects adjacent edges with a new one and
checks if the new triangle does not overlap with



Figure 12: The holes are closed with flat trian-
gles.

any other triangle in its vicinity (see [8] for de-
tails). In order to bridge gaps for each edge of the
first component, the closest point of the second
component must be found. Normally, it is not
trivial to solve this so-called “closest point prob-
lem” in less than quadratic time. However, in
our case we need only search for boundary ver-
tices. Since their number usually has the mag-
nitude

√
N, even the brute force approach solves

the problem in linear time. Finally, the flat trian-
gles filled in by the closing operations are refined
with the new approximating subdivision method
(see Fig. 13). The holes are filled in with sur-
faces that extrapolate the data at the boundaries
with minimum curvature variations. As a result,
the transition between measured and synthetic
data is not visible. The shape is reconstructed

Figure 13: The new triangles are refined by sub-
division.

in a plausible manner. Of course, it is not pos-
sible to reconstruct small details which were not
scanned.

6 Conclusions

The practical benefit of the new non-linear subdi-
vision scheme, at least the approximating one, is
obvious: It enables to seamlessly integrate syn-
thetic surfaces into measured data. Unlike lin-
ear subdivision, which is embedded into the the-
oretical framework of wavelets, the theoretical
background is still not satisfying. It seems to
be a challenge for future research to extend the
classical wavelet theory to non-linear schemes.
Maybe, this will create the long desired theoret-



ical basis for interpolation, subdivision, smooth-
ing, and compression of unstructured data like
triangle meshes.
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